FXE060-25-EM

FlexPro ${ }^{\circledR}$ Series
Product Status: Active

SPECIFICATIONS

Current Peak

50 A

Current Continuous
25 A
10-55 VDC
DC Supply Voltage Network Communication

The FXE060-25-EM is a FlexPro ${ }^{\circledR}$ series Extended Environment servo drive with IMPACT™ architecture.
The FXE060-25-EM offers full tuning control of all servo loops and is designed to drive brushed and brushless servo motors, and closed loop stepper motors. The drive accepts a variety of external command signals, or can use the built-in Motion Engine, an internal motion controller used with Sequencing and Indexing commands. Programmable digital and analog I/O are included to enhance interfacing with external controllers and devices.

The FXE060-25-EM features an EtherCAT ${ }^{\oplus}$ interface for network communication using CANopen over EtherCAT (CoE) and USB connectivity for drive configuration and setup. All drive and motor parameters are stored in non-volatile memory.

IMPACT ${ }^{\text {TM }}$ (Integrated Motion Platform And Control Technology combines exceptional processing capability and highcurrent components to create powerful, compact, feature-loaded servo solutions. IMPACT ${ }^{\top M}$ is used in all FlexPro ${ }^{\circledR}$ drives and is available in custom products as well.

The FXE060-25-EM conforms to the following specifications and is designed to the Environmental Engineering Considerations as defined in MIL-STD-810F.

Extended Environment Performance

Ambient Operating Temperature Range
$-40^{\circ} \mathrm{C}$ to $+95^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.+203^{\circ} \mathrm{F}\right)$
Thermal Shock
$-40^{\circ} \mathrm{C}$ to $+95^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.+203^{\circ} \mathrm{F}\right)$ within 3 min .
Relative Humidity
0 to 95%, Non-Condensing
Vibration $\quad 25 \mathrm{Grms}$ for 5 min . in 3 axes
Altitude
-400 m to +25000 m
Contaminants
Pollution Degree 2

FEATURES

- CoE - Based on DSP-402 Device Profile for Drives and Motion Control
- Synchronization using Distributed Clocks
- Position Cycle Times down to $100 \mu \mathrm{~s}$
- Four Quadrant Regenerative Operation
- Programmable Gain Settings
- PIDF Velocity Loop
- Extended Environmental Ratings
- Compact Size, High Power Density
- On-the-Fly Mode Switching
- On-the-Fly Gain Set Switching
- Dedicated Safe Torque Off (STO) Inputs
- Space Vector Modulation (SVM) Technology

Feedback Supporfed	- Absolute Encoder - BiSS C-Mode - Incremental Encoder - Hall Sensors - Aux Incremental Encoder - Tachometer ($\pm 10 \mathrm{~V}$)	Mołors Supported	- Three Phase - Single Phase - Stepper	Modes of Operation	- Profile Modes - Cyclic Synchronous Modes - Current - Velocity - Position
Command Sources	- Over the Network - $\pm 10 \mathrm{~V}$ Analog - Sequencing - Indexing - Jogging - Step \& Direction - Encoder Following	Inputs / Outputs	- 4 Programmable Digital Inputs - 3 Programmable Digital Outputs - 1 Programmable Analog Input	Agency Approvals	- RoHS - MIL-STD-810F (as stated) - MIL-STD-1275D (optional) - MIL-STD-461E (optional) - MIL-STD-704F (optional) - MIL-HDBK-217 (optional) - UL (Pending) - CE (Pending) - TUV Rheinland (STO) (Pending)

BLOCK DIAGRAM

FXE060-25-EM

INFORMATION ON APPROVALS AND COMPLIANCES

RoHS
MIL-STD-810F
MIL-STD-1275D
MIL-STD-461E
MIL-STD-704F
MIL-HDBK-217

The RoHS Directive restricts the use of certain substances including lead, mercury, cadmium, hexavalent chromium and halogenated flame retardants PBB and PBDE in electronic equipment.

Environmental Engineering Considerations and Laboratory Tests - (as stated)
Characteristics of 28 Volt DC Electrical Systems in Military Vehicles - (optional)
Requirements for the Control of Electromagnetic Interference Characteristics of Subsystems and Equipment (optional)
Aircraft Electric Power Characteristics - (optional)
Reliability Prediction of Electronic Equipment (MTBF) - (optional)

SPECIFICATIONS

Electrical Specifications		
Nominal DC Supply Input Range	VDC	12-48
DC Supply Input Range	VDC	10-55
DC Supply Undervoltage	VDC	8
DC Supply Overvoltage	VDC	58
Logic Supply Input Range (optional)	VDC	10-55
Safe Torque Off Voltage (Default)	VDC	5
Minimum Required External Bus Capacitance	$\mu \mathrm{F}$	500
Maximum Peak Current Output ${ }^{1}$	A (Arms)	50 (35.3)
Maximum Continuous Current Output ${ }^{2}$	A (Arms)	25 (25)
Efficiency at Rated Power	\%	99
Maximum Continuous Output Power	W	1361
Maximum Power Dissipation at Rated Power	W	14
Minimum Load Inductance (line-to-line) ${ }^{3}$	$\mu \mathrm{H}$	150 (@ 48VDC supply); 75 (@24VDC supply); 40 (@12VDC supply)
Switching Frequency	kHz	20
Maximum Output PWM Duty Cycle	\%	83
Communication Interfaces ${ }^{4}$	-	EtherCAT® (USB for configuration)
Command Sources	-	± 10 V Analog, Over the Network, Sequencing, Indexing, Jogging, Step \& Direction, Encoder Following
Feedback Supported	-	Absolute Encoder (BiSS C-Mode), Hall Sensors, Incremental Encoder, Auxiliary Incremental Encoder, Tachometer ($\pm 10 \mathrm{~V}$)
Commutation Methods	-	Sinusoidal, Trapezoidal
Modes of Operation	-	Profile Modes, Cyclic Synchronous Modes, Current, Velocity, Position
Motors Supported ${ }^{5}$	-	Three Phase (Brushless Servo), Single Phase (Brushed Servo, Voice Coil, Inductive Load), Stepper (2- or 3-Phase Closed Loop)
Hardware Protection	-	40+ Configurable Functions, Over Current, Over Temperature (Drive \& Motor), Over Voltage, Short Circuit (Phase-Phase \& Phase-Ground), Under Voltage
Programmable Digital Inputs/Outputs	-	4/3
Programmable Analog Inputs/Outputs	-	1/0
Primary I/O Logic Level	-	5 VDC , not isolated
Current Loop Sample Time	$\mu \mathrm{s}$	50
Velocity Loop Sample Time	$\mu \mathrm{S}$	100
Position Loop Sample Time	$\mu \mathrm{s}$	100
Maximum Encoder Frequency	MHz	20 (5 pre-quadrature)
Description	Mechan Units	al Specifications Value
Size (HxW x D)	mm (in)	$38.1 \times 25.4 \times 15.8(1.50 \times 1.00 \times 0.60)$
Weight	g (oz)	TBD
Ambient Operating Temperature Range ${ }^{6}$	${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$	-40-95 (-40-203)
Storage Temperature Range	${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$	-50-100 (-58-212)
Thermal Shock	${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$	-40-95 (-40-203) within 3 min
Relative Humidity	-	0-95\%, non-condensing
Vibration	Grms	25 for 5 minutes in 3 axes
Altitude	m	-400-25000
Contaminants	-	Pollution Degree 2
Form Factor	-	PCB Mounted
Pl SIGNAL CONNECTOR	-	80-pin 0.4mm spaced connector
TERMINAL PINS	-	26x Terminal Pins

Notes

1. Capable of supplying drive rated peak current for 2 seconds with 10 second foldback to continuous value. Longer times are possible with lower current limits
2. Continuous $A_{r m s}$ value attainable when RMS Charge-Based Limiting is used
3. Lower inductance is acceptable for bus voltages well below maximum. Use external inductance to meet requirements.
4. EtherCAT® is a registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany.
5. Maximum motor speed for stepper motors is 600 RPM. Consult the hardware installation manual for 2-phase stepper wiring configuration.
6. Additional cooling and/or heatsink may be required to achieve rated performance.

PIN FUNCTIONS

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Pin} \& \multirow[b]{2}{*}{Name} \& \multicolumn{4}{|c|}{P1 - Signal Connector} \& \multirow[b]{2}{*}{Description / Notes} \&

\hline \& \& Description / Notes \& 1/O \& Pin \& Name \& \& I/O

\hline 1 \& GROUND \& Ground \& GND \& 2 \& GROUND \& Ground \& GND

\hline 3 \& PAI-1+ \& \multirow[t]{2}{*}{Differential Programmable Analog Input or Reference Signal Input (12-bit Resolution)} \& I \& 4 \& DATA+ USB \& \multirow[b]{2}{*}{USB Data Channel} \& I/O

\hline 5 \& PAI-1- \& \& I \& 6 \& DATA- USB \& \& 1/O

\hline 7 \& THERMISTOR \& Motor Thermal Protection. \& 1 \& 8 \& GROUND \& Ground \& GND

\hline 9 \& GROUND \& Ground \& GND \& 10 \& SCLA \& \multirow[t]{2}{*}{${ }^{12} \mathrm{C}$ Data Signals for Addressing, Network Error LED, and Bridge Status LED. See Hardware Manual for more info.} \& \bigcirc

\hline 11 \& ENC 1 DATA+ / A+ \& \multirow[t]{2}{*}{Differential Data Line for Absolute Encoders (BiSS: SLO+/-) or Differential Incremental Encoder A.} \& I/O \& 12 \& SDAA \& \& I/O

\hline 13 \& ENC 1 DATA- / A- \& \& 1/O \& 14 \& HALL A \& \multirow{3}{*}{Single-ended Commutation Sensor Inputs} \& I

\hline 15 \& ENC 1 CLK+ / B+ \& \multirow[t]{2}{*}{Differential Clock Line for Absolute Encoders (BiSS: MA+/-) or Differential Incremental Encoder B.} \& 1/O \& 16 \& HALL B \& \& 1

\hline 17 \& ENC 1 CLK- / B- \& \& 1/O \& 18 \& HALL C \& \& 1

\hline 19 \& GROUND \& Ground \& GND \& 20 \& GROUND \& Ground \& GND

\hline 21 \& ENC 1 REF+ / $1+$ \& \multirow[t]{2}{*}{Differential Reference Mark for Absolute Encoders (Leave open for BiSS) or Differential Incremental Encoder Index.} \& 1 \& 22 \& ENC 2 A+ \& \multirow{2}{*}{Differential Incremental Encoder A.} \& I

\hline 23 \& ENC 1 REF- / I- \& \& 1 \& 24 \& ENC 2 A- \& \& 1

\hline 25 \& RESERVED \& Reserved. Do not connect. \& - \& 26 \& ENC $2 \mathrm{~B}+$ \& \multirow[b]{2}{*}{Differential Incremental Encoder B.} \& I

\hline 27 \& RESERVED \& Reserved. Do not connect. \& - \& 28 \& ENC 2 B- \& \& I

\hline 29 \& RESERVED \& Reserved. Do not connect. \& - \& 30 \& ENC $21+$ \& \multirow[t]{2}{*}{Differential Incremental Encoder Index.} \& I

\hline 31 \& PDI-1 \& Programmable Digital Input \& 1 \& 32 \& ENC $21-$ \& \& 1

\hline 33 \& PDI-2 \& Programmable Digital Input \& 1 \& 34 \& PDO-1 \& Programmable Digital Output (TTL/8mA) \& 0

\hline 35 \& PDI-3 \& Programmable Digital Input \& I \& 36 \& PDO-2 \& Programmable Digital Output (TTL/8mA) \& 0

\hline 37 \& PDI-4 \& Programmable Digital Input \& I \& 38 \& PDO-3 \& Programmable Digital Output (TTL/8mA) \& 0

\hline 39 \& GROUND \& Ground \& GND \& 40 \& GROUND \& Ground \& GND

\hline 41 \& TX-IN \& \multirow[b]{2}{*}{Transmit Line IN (100 Base TX)} \& 1 \& 42 \& TX- OUT \& \multirow[b]{2}{*}{Transmit Line OUT (100 Base TX)} \& 0

\hline 43 \& TX+ IN \& \& I \& 44 \& TX+ OUT \& \& \bigcirc

\hline 45 \& RX-IN \& \multirow[b]{2}{*}{Receive Line IN (100 Base TX)} \& I \& 46 \& RX- OUT \& \multirow[b]{2}{*}{Receive Line OUT (100 Base TX)} \& 0

\hline 47 \& RX+ 1 N \& \& I \& 48 \& RX+ OUT \& \& 0

\hline 49 \& +3V BIAS IN \& \multirow[t]{2}{*}{+3V Supply for Transformer/Magnetics Bias Link and Activity Indicator for IN port. Function based on protocol specification. See Hardware Information below.} \& 0 \& 50 \& +3V BIAS OUT \& +3V Supply for Transformer/Magnetics Bias \& 0

\hline 51 \& LINK/ACT IN \& \& I/O \& 52 \& LINK/ACT OUT \& Link and Activity Indicator for OUT port. Function based on protocol specification. See Hardware Information below. \& I/O

\hline 53 \& STATUS \& Run State Indicator for Network. Function based on protocol specification. See Hardware Information below. \& I/O \& 54 \& RESERVED \& Reserved. Do not connect. \& -

\hline 55 \& RESERVED \& Reserved. Do not connect. \& - \& 56 \& RESERVED \& Reserved. Do not connect. \& -

\hline 57 \& RESERVED \& Reserved. Do not connect. \& - \& 58 \& RESERVED \& Reserved. Do not connect. \& -

\hline 59 \& GROUND \& Ground \& GND \& 60 \& GROUND \& Ground \& GND

\hline 61 \& RESERVED \& Reserved. Do not connect. \& - \& 62 \& RESERVED \& Reserved. Do not connect. \& -

\hline 63 \& RESERVED \& Reserved. Do not connect. \& - \& 64 \& RESERVED \& Reserved. Do not connect. \& -

\hline 65 \& RESERVED \& Reserved. Do not connect. \& - \& 66 \& RESERVED \& Reserved. Do not connect. \& -

\hline 67 \& RESERVED \& Reserved. Do not connect. \& - \& 68 \& STEP \& Step Input. \& I

\hline 69 \& RESERVED \& Reserved. Do not connect. \& - \& 70 \& DIR \& Direction Input. \& 1

\hline 71 \& RESERVED \& Reserved. Do not connect. \& - \& 72 \& RESERVED \& Reserved. Do not connect. \& -

\hline 73 \& +5V_OUT \& +5 VDC unprotected supply (See Note 1) \& \bigcirc \& 74 \& RESERVED \& Reserved. Do not connect. \& ${ }^{-}$

\hline 75 \& +5V_USER \& +5VDC User Supply for feedback and local \& 0 \& 76 \& +3V3 OUT \& +3.3VDC Supply Output for local logic \& 0

\hline 77 \& +5V_USER \& logic (See Note 1) \& \bigcirc \& 78 \& +3V3 OUT \& signals (100 mA max) \& 0

\hline 79 \& GROUND \& Ground \& GND \& 80 \& GROUND \& Ground \& GND

\hline \multicolumn{2}{|l|}{Connector Information} \& 80 -pin, 0.4 mm spaced connector \& \multicolumn{2}{|l|}{\multirow[t]{3}{*}{}} \& +3V3 OUT 76 +3V3 OUT 78 \qquad GROUND 80 \qquad \& \multirow[t]{2}{*}{$$
\begin{array}{cc}
\ldots & \cdots \\
\Gamma^{4}{ }^{2} \text { DAT } \\
\hline 10
\end{array}
$$} \&

\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Mating Connector Details

Mating Connector
Included with Drive}} \& PANASONIC: P/N AXT380224 \& \& \& \multicolumn{2}{|r|}{(Ш-} \&

\hline \& \& No \& \& \& GROU $+5 \mathrm{~V}$ $+5 \mathrm{~V}$ \& \&

\hline
\end{tabular}

Notes

1. Total current through pins P1-73/75/77 should not exceed 300 mA , while no single pin should be loaded more than 150 mA .

TERMINAL PIN LOCATIONS

The 26 Terminal Pins provide connection to the high power drive signals. Terminal Pins must be soldered to an interface board.

Pin	Name	Description / Notes	I/O
Tl	STO-1 INPUT	Safe Torque Off - Input 1	I
T2	STO RETURN	Safe Torque Off Return	STORET
T3	STO-2 INPUT	Safe Torque Off - Input 2	I
T4	LOGIC PWR	Logic Supply Input (10-55VDC) (optional)	I
T5	HV	DC Supply Input (10-55VDC). Minimum $500 \mu \mathrm{~F}$ external capacitance required between HV and POWER GND.	I
T6	HV		I
T7	HV		I
T8	HV		I
T9	HV		I
T10	MOTOR C	Motor Phase C. All provided motor phase output pins must be used.	\bigcirc
T11	MOTOR C		\bigcirc
T12	MOTOR C		\bigcirc
T13	MOTOR C		\bigcirc
T14	POWER GND	Ground.	GND
T15	MOTOR B	Motor Phase B. All provided motor phase output pins must be used.	\bigcirc
T16	MOTOR B		\bigcirc
T17	MOTOR B		\bigcirc
T18	MOTOR B		\bigcirc
T19	POWER GND	Ground.	GND
T20	POWER GND		GND
T21	POWER GND		GND
T22	POWER GND		GND
T23	MOTOR A	Motor Phase A. All provided motor phase output pins must be used.	\bigcirc
T24	MOTOR A		\bigcirc
T25	MOTOR A		\bigcirc
T26	MOTOR A		\bigcirc

Terminal Pin Details

Safe Torque Off (STO) Inputs
The Safe Torque Off (STO) inputs are dedicated +5 VDC sinking single-ended inputs. For applications not using STO functionality, disabling of the STO feature is required for proper drive operation. STO may be disabled by following the STO Disable wiring instructions as given in the hardware installation manual. Consult the hardware installation manual for more information.

HARDWARE INFORMATION

LED Functionality

LINK/ACTIN (PI-5I); LINK/ACT OUT (PI-52); STATUS (PI-53);
The LINK/ACT IN, LINK/ACT OUT, and STATUS pins serve as EtherCAT network indicators. On a standard RJ-45 connector used with EtherCAT network topology, the typical EtherCAT network indicator LED locations are as shown in the below diagrams. Note that the drive features signals for connection to LEDs on an RJ-45 connector, but the connector itself is not included on the drive. The Development Card assembly FD060-25-EM features a built-in RJ-45 connector with LEDs for this purpose.

LINK/ACT IN and LINK/ACT OUT are used to drive the corresponding LINK IN and LINK OUT LEDs on a typical RJ-45 connector. The STATUS pin is used to drive the Status LED. The ERROR LED is driven by the ${ }^{2} \mathrm{C}$ C Data signals ($\mathrm{P} 1-10 / 12$). Consult the hardware installation manual for recommended wiring connections. The LED Function Protocol tables below describe typical LED functionality.

LINK/ACT LEDS		
LED State	Description	
Green - On	Valid Link - No Activity	
Green - Flickering	Valid Link - Network Activity	
Off	Invalid Link	
STATUS LED		
LED State	Description	
Green - On	The device is in the state OPERATIONAL	
Green - Blinking ($2.5 \mathrm{~Hz}-200 \mathrm{~ms}$ on and 200ms off)	The device is in the state PRE-OPERATIONAL	
Green - Single Flash (200ms flash followed by 1000 ms off)	The device is in state SAFE-OPERATIONAL	
Green - Flickering (10 Hz - 50 ms on and 50 ms off)	The device is booting and has not yet entered the INIT state, or The device is in state BOOTSTRAP, or Firmware download operation in progress	
Off	The device is in state INIT	
ERROR LED		
LED State	Description	Example
Red - On	A PDI Watchdog timeout has occurred.	Application controller is not responding anymore.
Red - Blinking ($2.5 \mathrm{~Hz}-200 \mathrm{~ms}$ on and 200ms off)	General Configuration Error.	State change commanded by master is impossible due to register or object settings.
Red - Flickering ($10 \mathrm{~Hz}-50 \mathrm{~ms}$ on and 50 ms off)	Booting Error was detected. INIT state reached, but parameter "Change" in the AL status register is set to 0x01:change/error	Checksum Error in Flash Memory.
Red - Single Flash (200ms flash followed by 1000 ms off)	The slave device application has changed the EtherCAT state autonomously: Parameter "Change" in the AL status register is set to 0×01 :change/error.	Synchronization error; device enters SAFEOPERATIONAL automatically
Red - Double Flash (Two 200ms flashes separated by 200ms off, followed by 1000 ms off)	An application Watchdog timeout has occurred.	Sync Manager Watchdog timeout.

MOUNTING DIMENSIONS

PART NUMBERING AND CUSTOMIZATION INFORMATION

ADVANCED Motion Controls also has the capability to promptly develop and deliver specified products for OEMs with volume requests. Our Applications and Engineering Departments will work closely with your design team through all stages of development in order to provide the best servo drive solution for your system. Equipped with on-site manufacturing for quick-turn customs capabilities,
ADVANCED Motion Controls utilizes our years of engineering and manufacturing expertise to decrease your costs and time-to-market while increasing system quality and reliability.

Examples of Customized Products

| Optimized Footprint | Tailored Project File |
| :--- | :--- | :--- |
| Private Label Software | Silkscreen Branding |
| OEM Specified Connectors | Optimized Base Plate |
| No Outer Case | Increased Current Limits |
| Increased Current Resolution | Increased Voltage Range |
| Increased Temperature Range | Conformal Coating |
| Custom Control Interface | Multi-Axis Configurations |
| Integrated System I/O | Reduced Profile Size and Weight |

Feel free to contact us for further information and details!

Available Accessories

ADVANCED Motion Controls offers a variety of accessories designed to facilitate drive integration into a servo system. Visit www.a-m-c.com to see which accessories will assist with your application design and implementation.

[^0]
[^0]: All specifications in this document are subject to change without written notice. Actual product may differ from pictures provided in this document.

