

Description

The 30A8DD PWM servo amplifier is designed to drive brush type DC motors. The PWM frequency is determined by the PWM input signal. The drive is fully protected against over-voltage, over-current, overheating and short circuits across motor, ground and power leads. The drive interfaces with digital controllers that have a digital PWM output but can also be used as a stand-alone system when using Pot 2. The 30A8DD drive requires only a single unregulated DC power supply as all logic and control voltages are generated internally. PWM input determines the output duty cycle. "Direction In" determines which side of the "H bridge" output is switching. Current limit can be reduced by Pot 1 (14 turn potentiometer), by the DIP switches and/or by an external current limiting resistor. The voltage at the current monitor pin P1-15 is proportional to the actual motor current.

Power Range	
Peak Current	30 A
Continuous Current	15 A
Supply Voltage	20 - 80 VDC

Features

- Four Quadrant Regenerative Operation
- Optically Isolated Digital Inputs
- Built-in PWM Generator
- Adjustable Current Limits

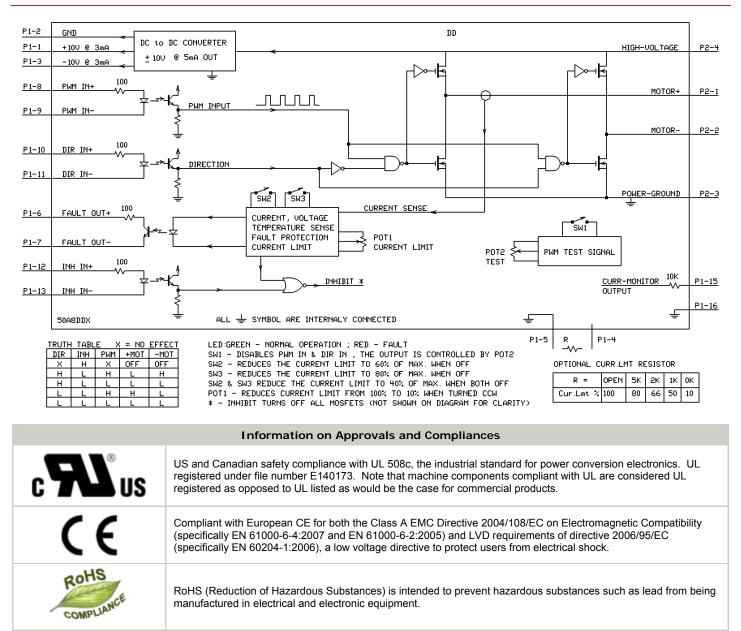
Single Supply Operation

Drive Status LED

High Switching Frequency

Digital Fault Output Monitor

MODES OF OPERATION


- Direct PWM
- COMMAND SOURCE
 - PWM and Direction

COMPLIANCES & AGENCY APPROVALS

- UL
- cUL
- CE Class A (LVD)
- CE Class A (EMC)
- RoHS

BLOCK DIAGRAM

SPECIFICATIONS

	Power S	Specifications	
Description	Units	Value	
DC Supply Voltage Range	VDC	20 - 80	
DC Bus Over Voltage Limit	VDC	85	
Maximum Peak Output Current ¹	A	30	
Maximum Continuous Output Current	A	15	
Maximum Continuous Output Power	W	1140	
Maximum Power Dissipation at Continuous Current	W	60	
Minimum Load Inductance (Line-To-Line) ²	μH	150	
Low Voltage Supply Outputs	-	±10 VDC (3 mA)	
Switching Frequency Range	kHz	5 - 20	
	Control	Specifications	
Description	Units	Value	
Command Sources	-	PWM and Direction	
Commutation Methods	-	Brush Type	
Modes of Operation	-	Direct PWM	
Motors Supported	-	Single Phase (Brushed, Voice Coil, Inductive Load)	
Hardware Protection	-	Over Current, Over Temperature, Over Voltage, Short Circuit (Phase-Phase & Phase-Ground)	
Primary I/O Logic Level	-	5V TTL	
	Mechanica	al Specifications	
Description	Units	Value	
Agency Approvals	-	CE Class A (EMC), CE Class A (LVD), cUL, RoHS, UL	
Size (H x W x D)	mm (in)	186.7 x 111.7 x 25.4 (7.4 x 4.4 x 1)	
Weight	g (oz)	680 (24)	
Heatsink (Base) Temperature Range ³	°C (°F)	0 - 65 (32 - 149)	
Storage Temperature Range	°C (°F)	-40 - 85 (-40 - 185)	
Form Factor	-	Panel Mount	
P1 Connector	-	16-pin, 2.54 mm spaced, friction lock header	
P2 Connector	-	4-contact, 11.10 mm spaced, tri-barrier terminal block	

Notes

Maximum duration of peak current is ~2 seconds. Peak RMS value must not exceed continuous current rating of the drive. Lower inductance is acceptable for bus voltages well below maximum. Use external inductance to meet requirements. Additional cooling and/or heatsink may be required to achieve rated performance. 1.

1. 2. 3.

PIN FUNCTIONS

P1 - Signal Connector			
Pin	Name	Description / Notes	1/0
1	+10V 3mA OUT	140 V @ 2 mA low remarks for another starting. Chart simult protocold. Deferring	0
2	GND	±10 V @ 3 mA low power supply for customer use. Short circuit protected. Reference ground common with signal ground.	GND
3	-10V 3mA OUT		0
4	CURRENT LIMIT	Used to reduce the factory preset maximum current limit. See details below.	I
5	GND	Used to reduce the factory preset maximum current limit. See details below.	GND
6	+FAULT	Opto-isolated Fault Output (+5 V). Output transistor turns on during output short circuit,	0
7	-FAULT	over voltage, over temperature, inhibit, and during power-up reset. Fault condition indicated by red LED.	
8	+PWM	Opto-isolated Pulse Width Modulation Input (+5 V). Activating opto-couple activates bridge	
9	-PWM	output.	I
10	+DIR	Onto isolated Direction Input $(15)(1)$. Activisting anto equals inverte bridge output palarity	
11	-DIR	Opto-isolated Direction Input (+5 V). Activating opto-couple inverts bridge output polarity.	I
12	+INHIBIT	Opto-isolated Inhibit Input (+5 V). Activating opto-couple enables bridge.	I
13	-INHIBIT	Opto-isolated minibit input (+5 v). Activating opto-couple enables bridge.	I
14	RESERVED	Reserved	-
15	CURRENT MONITOR	Current Monitor. Analog output signal proportional to the actual current output. Scaling is 3.8 A/V. Measure relative to Monitor Ground.	0
16	MONITOR GND	Monitor Ground. Use this as a reference point when measuring the Current Monitor output.	GND

	P2 - Power Connector			
Pin	Name	Description / Notes	1/0	
1	+MOT	Positive Motor Output	0	
2	-MOT	Negative Motor Output	0	
3	PWR GND	Power Ground (Common With Signal Ground)	GND	
4	HIGH VOLT	DC Power Input	I	

Pin Details

CURRENT LIMIT (P1-4)

This pin can be used to reduce the peak and continuous current limit, while maintaining their ratio (50%), by connecting an external current limiting resistor between this pin (P1-4) and signal ground. 100% current limit means no reduction. See table below.

Current Limit Resistor	OPEN	5 kΩ	2 kΩ	1 kΩ	0 Ω (SHORT)
Current Limit %	100	80	66	50	10

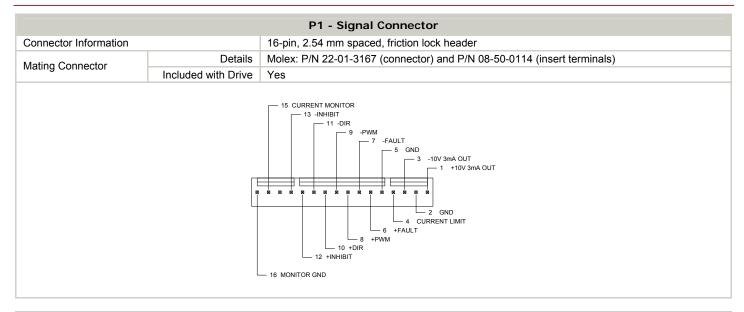
HARDWARE SETTINGS

Switch Functions

Switch	Switch Description	Setting		
Switch		On	Off	
1	Disables the PWM and direction inputs and enables the internal test signal.	Internal Test Signal	External Signal	
2	Adjusts the current limit setting. See details below.	-	-	
3	Adjusts the current limit setting. See details below.	-	-	

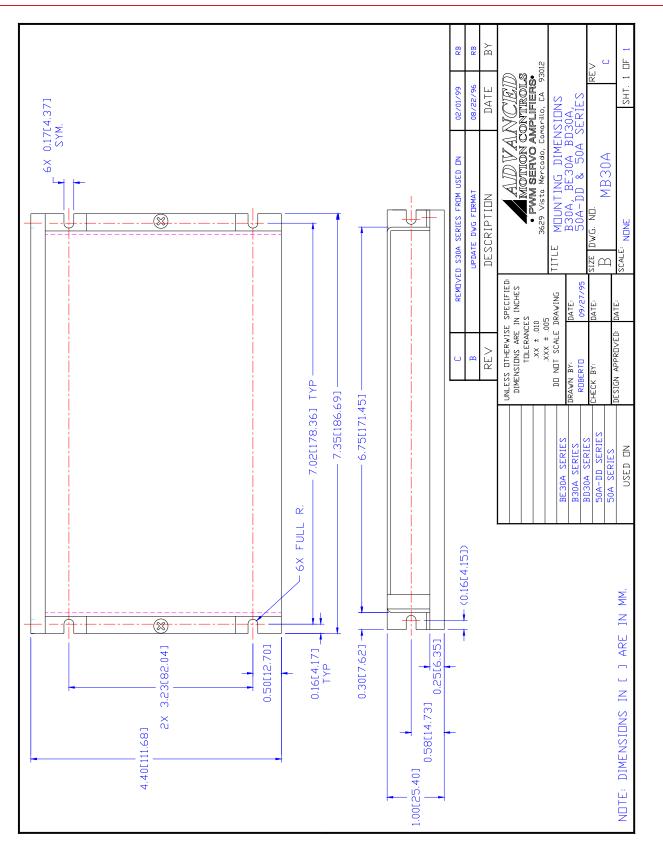
Additional Details

Switches 2 and 3 can be used to reduce the peak and continuous current limit to a percentage given in the table below. 100% means no reduction.

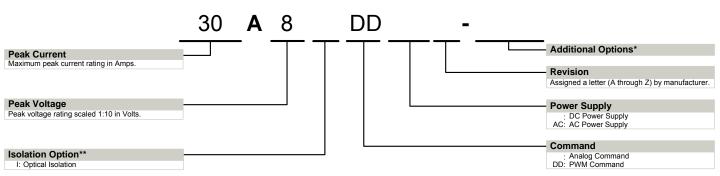

Current Limit %	Switch Settings		
	Switch 2	Switch 3	
40	OFF	OFF	
60	OFF	ON	
80	ON	OFF	
100	ON	ON	

Potentiometer Functions

Potentiometer	Description	Turning CW	
1	Current limit. Adjusts both continuous and peak current limit while maintaining their ratio (50%). Adjustment ranges from 100% to 10% of maximum current limit.	Increases limit	
2 PWM test signal adjustment. Used to adjust the duty- cycle/direction of the on-board test signal. Increases positive direction command			
Note: Potentiometers are approximately linear and have 12 active turns with 1 inactive turn on each end.			


MECHANICAL INFORMATION

P2 - Power Connector			
Connector Information		4-contact, 11.10 mm spaced, tri-barrier terminal block	
Mating Connector Details Not applicable		Not applicable	
Mating Connector	Included with Drive	Not applicable	
		4 HIGH VOLT 3 PWR GND 2 -MOT 1 +MOT 1 +MOT 1 +MOT	



MOUNTING DIMENSIONS

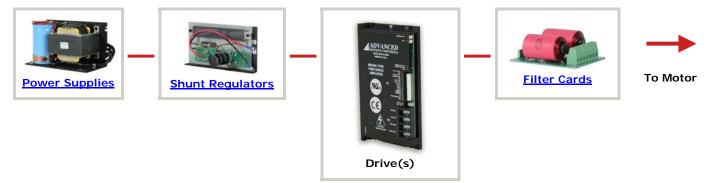
PART NUMBERING INFORMATION

* Options available for orders with sufficient volume. Contact ADVANCED Motion Controls for more information.

** Isolation comes standard on all AC supply drives and most DC supply drives 200V and above. Consult selection tables of the website or the drive datasheet block diagram to see if isolation is included.

ADVANCED Motion Controls analog series of servo drives are available in many configurations. Note that not all possible part number combinations are offered as standard drives. All models listed in the selection tables of the website are readily available, standard product offerings.

ADVANCED Motion Controls also has the capability to promptly develop and deliver specified products for OEMs with volume requests. Our Applications and Engineering Departments will work closely with your design team through all stages of development in order to provide the best servo drive solution for your system. Equipped with on-site manufacturing for quick-turn customs capabilities, *ADVANCED* Motion Controls utilizes our years of engineering and manufacturing expertise to decrease your costs and time-to-market while increasing system quality and reliability.


Examples of Modifications and Customized Products

- Integration of Drive into Motor Housing
- Mount OEM PCB onto Drive Without Cables
- Multi-axis Configuration for Compact System
- Custom PCB and Baseplate for Optimized Footprint
- RTV/Epoxy Components for High Vibration
- OEM Specified Connectors for Instant Compatibility
- OEM Specified Silkscreen for Custom Appearance
- Increased Thermal Limits for High Temp. Operation
- Integrate OEM Circuitry onto Drive PCB
- Custom Control Loop Tuned to Motor Characteristics
- Custom I/O Interface for System Compatibility
- Preset Switches and Pots to Reduce User Setup
- Optimized Switching Frequency
- A Ramped Velocity Command for Smooth Acceleration
- Remove Unused Features to Reduce OEM Cost
- Application Specific Current and Voltage Limits

Feel free to contact Applications Engineering for further information and details.

Available Accessories

ADVANCED Motion Controls offers a variety of accessories designed to facilitate drive integration into a servo system. Visit <u>www.a-m-c.com</u> to see which accessories will assist with your application design and implementation.

All specifications in this document are subject to change without written notice. Actual product may differ from pictures provided in this document.